我们可以看到,从2012年到今天,Google对深度学习的利用在快速增长,应用领域也极为广泛。从这张图我们就可以看到Google,也就是现在的 Alphabet在人工智能方面是多么的有野心。
再回到我原来的问题,我们现在是不是生逢其时,可以在正确的时候选择进入人工智能这个领域呢?如果我们相信Google这帮人很聪明,如果我们相信Google对深度学习的使用逻辑,我们也要相信人工智能的应用期即将来临。
深度学习的挑战
深度学习也面临挑战
但是深度学习以及机器学习还面临很多挑战。这里有几个问题。
第一个问题,就是我刚刚提到的:目前仍然没有一个统一的平台。在深度学习方面,现在的人懂就是懂,不懂就是不懂。这就是为什么Google最近花了重金不断在挖业界顶尖的人才,给年轻人开出的年薪甚至超过200万美元。这些人也就是二十来岁,博士刚毕业不久,怎么会这么值钱呢?
其实就是因为两个理由,第一,这些人进入了公司之后,会被投入到健康、医疗、预防等等各个领域的研究。他们虽然每年拿走公司的两百万美金年薪,但是也许两年后他们就能在相关领域创造出两亿美金的价值,所以对Google公司而言,这些人才实际上不贵,是非常划算的。
第二个理由就是Google多雇一个,Facebook就得少雇一个。这不是开玩笑。因为在美国有三个大公司在疯狂挖人工智能的人才——Google、Facebook和Microsoft,他们之间竞争激烈,对人才的吸引力也不相上下。
第二就是深度学习的网络太大,需要海量的数据。
第三,因为数据太多,所以计算特别的慢,所以需要非常大的计算量。
第四点有点奇怪但也合理:机器无法用人的语言告知做事的动机和理由。即便机器训练做了很棒的深度学习,人脸识别、语音识别做的非常棒,但它不能和人一样,它讲不出来这是怎么做到的。虽然有人也在做这方面的研究,但是在今天,如果一个领域是不断需要告诉别人该怎么做,需要向别人去解释为什么的,那这个领域对于深度学习来讲还是比较困难的。比如Alpha Go打败李世石,你要问Alpha Go是为什么走这步棋,它是答不上来的。
即便有如此多的局限,我们还是认为人工智能在很多领域可以迅速应用,并且可以帮助企业打造竞争壁垒。
人工智能如何帮企业打造竞争壁垒?可以从如下四个方面思考:
第一,如果你有垄断性的大数据,你就会有很大的优势。关于数据需要注意的几点是,首先垄断性大数据不是公开的数据,不是剽来的数据,也不是买来的数据,因为这样的事情你能做竞争对手也能做。其次,无标签的数据也不会给你带来优势。再次,如果是人工标签的数据也不行,因为人工标签太慢了。最好的数据是闭环的数据,所谓闭环的数据就是在你应用的时候可以捕捉到数据并且知道最终你根据数据做出的抉择对或不对。我们投资的face++,它有和美图、阿里的合作,就一定程度形成了特别大的数据的优势。
第二,拥有庞大的机群。机群是很重要的,包括需要什么处理系统的支持,怎么去部署,用什么样的计算架构等等。